Catalytic Asymmetric Allylation of Prochiral Nucleophiles, α -Acetamido- β -ketoesters

Ryoichi Kuwano and Yoshihiko Ito*

Department of Synthetic Chemistry and Biological Chemistry, Graduate School of Engineering Kyoto University, Sakyo-ku, Kyoto 606-8501, Japan

Received January 4, 1999

Catalytic asymmetric allylation through a chiral π -allylpalladium(II) complex has been intensively studied.¹ Most of the successful examples introduce a chiral center on an allylic substrate.² The enantioselective electrophilic attack of a π -allylpalladium(II) to a stabilized prochiral nucleophile is not facile to be controlled by a chiral ligand on the palladium atom,^{3,4} which is at the opposite side of the π -allyl carbon structure from the approaching nucleophile (Figure 1).⁵ Some devices have led to

the high enantioselective allylation of carbon nucleophiles, for example, (i) by the use of a bimetallic catalyst system for allylation with chiral rhodium(I) enolate of α -cyanopropionates,⁶ (ii) by the use of a chiral bidentate ligand with wide bite angle for asymmetric allylation of cyclic β -ketoesters,⁷ which may induce effective transmission of the ligand chirality.

Herein, we wish to report a highly enantioselective allylation (up to 95% ee) of prochiral nucleophiles, α -acetamido- β ketoesters 1, catalyzed by the chiral BINAP-palladium complex. The α -acetamido- β -ketoesters are new carbon nucleophiles, which undergo palladium-catalyzed allylations to furnish α -allyl- α acetamido- β -ketoesters **3** having a quaternary stereogenic center at the α -carbon.⁸

(3) (a) Fiaud, J.-C.; De Gournay, A. H.; Lachevéque, M.; Kagan, H. B. J. Organomet. Chem. **1978**, 154, 175–185. (b) Hayashi, T.; Kanehira, K.; Tsuchiya, H.; Kumada, M. J. Chem. Soc., Chem. Commun. 1982, 1162-1164. (c) Ito, Y.; Sawamura, M.; Matsuoka, M.; Matsumoto, Y.; Hayashi, T. *Tetrahedron Lett.* **1987**, 28, 4849–4852. (d) Hayashi, T.; Kanehira, K.; Hagihara, T.; Kumada, M. *J. Org. Chem.* **1988**, *53*, 113–120. (e) Sawamura, M.; Nagata, H.; Sakamoto, H.; Ito, Y. J. Am. Chem. Soc. 1992, 114, 2586-2592. (f) Sawamura, M.; Nakayama, Y.; Tang, W.-M.; Ito, Y. J. Org. Chem. 1996, 61, 9090–9096. (g) Genet, J.-P.; Ferroud, D.; Juge, S.; Montes, J. R. Tetrahedron Lett. 1986, 27, 4573–4576. (h) Genet, J.-P.; Juge, S.; Montes, J. R.; Gaudin, J. M. J. Chem. Soc., Chem. Commun. 1988, 718–719. (i) Genet, J. R.; Gaudin, J. M. J. Chem. Soc., Chem. Commun. 1988, 718–719. (i) Genet, J. R.; Martine, S. A. & K.; S. Martes, Martes, Martes, C. T. C. S. Martes, S. A. & S. Martes, S. J.-P.; Juge, S.; Achi, S.; Mallart, S.; Montes, J. R.; Levif, G. Tetrahedron 1988, 44, 5263–5275.

(4) (a) Baldwin, I. C.; Williams, J. M. J. Tetrahedron: Asymmetry 1995, 6, 679-682. (b) Trost, B. M.; Ariza, X. Angew. Chem., Int. Ed. Engl. 1997, 36, 2635-2637

(6) Sawamura, M.; Sudoh, M.; Ito, Y. J. Am. Chem. Soc. 1996, 118, 3309-3310.

(7) Trost, B. M.; Radinov, R.; Grenzer, E. M. J. Am. Chem. Soc. 1997, 119, 7879-7880.

Table 1. Asymmetric Allylation of α -Acetamido- β -ketoesters 1^a

	•	•				
entry	$R^{1}(1)$	R ² (2)	time, h	product	yield, % ^b	ee, % ^{<i>c</i>}
1	Me (1b)	H (2a)	24	3b	84	76
2	Ph (1c)	H (2a)	24	3c	92	80
3	Me (1b)	Pr (2b)	24	3d	96	87
4	Ph (1c)	Pr (2b)	48	3e	40	89
5	Et (1a)	Ph (2c)	4	3f	87	91
6	Me (1b)	Ph (2c)	2	3g	87	94
7	Ph (1c)	Ph (2c)	48	3h	71	95
8	<i>i</i> -Bu (1d)	Ph (2c)	2	3i	86	92
9	<i>i</i> -Pr (1e)	Ph (2c)	4	3ј	85	91

^{*a*} All reactions were carried out in toluene (0.2 M) at -30 °C. The ratio of **1**:**2**:*t*-BuOK:[Pd(*π*-allyl)Cl]₂:(*R*)-BINAP was 100:150:120:1: 1.05 unless otherwise noted. ^b Isolated yield by PTLC. ^c Determined by HPLC analysis with chiral stationary-phase column.

The first attempt for asymmetric allylation of methyl 2-(Nacetylamino)-3-oxopentanoate (1a) with allyl methyl carbonate was carried out in THF at 0 °C in the presence of the palladium catalyst generated from Pd₂(dba)₃•CHCl₃ and (R)-BINAP.⁹ The reaction was completed in 5 h to give the corresponding allylation product (3a) with 45% ee in 97% yield.^{10,11} The enantioselectivity was improved up to 72% ee by the use of allyl acetate and t-BuOK in toluene at -30 °C for 30 h in the presence of the palladium complex catalyst generated from $[Pd(\pi-allyl)Cl]_2$ and (R)-BINAP, giving 3a in 76% yield (Scheme 1).

The allylations of α -acetamido- β -ketoesters **1** with some allylic substrates 2 in toluene at -30 °C were examined, as summarized in Table 1. Various optically active allylation products **3b**-j were obtained with 77-95% ee in high yields by the use of the (R)-BINAP-palladium catalyst. Noteworthy is that the allylation of 1 with γ -substituted allylic substrates 2b and 2c provided selectively the corresponding **3d**-**j** without being accompanied by the regio- and (Z)-geometrical isomers. The enantioselectivities depended significantly upon substituent at the γ -carbon of 2,

⁽¹⁾ For reviews, see: (a) Hayashi, T. In Catalytic Asymmetric Synthesis; (1) For reviews, see: (a) Hayashi, 1. In Catalytic Asymmetric Synthesis;
() Jima, I., Ed.; VCH Publishers: New York, 1994; pp 325-365. (b) Trost, B.
M.; Van Vranken, D. L. Chem. Rev. 1996, 96, 395-422. (c) Williams, J. M.
J. Synlett 1996, 705-710. (d) Lübbers, T.; Metz, P. In Stereoselective Synthesis; Helmchen, G., Hoffmann, R. W., Mulzer, J., Schaumann, E., Eds.;
Thieme: Stuttgart, 1996; Vol. 4, pp 2371-2473.
(2) For recent examples, see: (a) Trost, B. M. Acc. Chem. Res. 1996, 29, 355-364. (b) von Matt, P.; Pfalz, A. Angew. Chem., Int. Ed. Engl. 1993, 32, 566-568. (c) Togni, A.; Breutel, C.; Schnyder, A.; Spindler, F.; Landert, H.;
Tiiani A. Lam. Chem. Soc. 1994, 1/6 A062-A066 (d) Kudis, S. Helmchen

Tijani, A. J. Am. Chem. Soc. 1994, 116, 4062–4066. (d) Kudis, S.; Helmchen, G. Angew. Chem., Int. Ed. Engl. 1998, 37, 3047-3050.

^{(5) (}a) Trost, B. M.; Weber, L.; Strege, P. E.; Fullerton, T. J.; Dietsche, T. J. J. Am. Chem. Soc. 1978, 100, 3416-3426. (b) Hayashi, T.; Konishi, M.; Kumada, M. J. Chem. Soc., Chem. Commun. 1984, 107-108. (c) Hayashi, T.; Yamamoto, A.; Ito, Y. J. Organomet. Chem. 1988, 338, 261-264

⁽⁸⁾ For catalytic asymmetric syntheses of α -alkylated α -amino acids with high enantiomeric excess, see: (a) Ito, Y.; Sawamura, M.; Shirakawa, E.;
 Hayashizaki, K.; Hayashi, T. *Tetrahedron* 1988, 44, 5253-5262. (b) Ruble,
 J. C.; Fu, G. C. J. Am. Chem. Soc. 1998, 120, 11532-11533 and ref 4b.
 (9) (R)-2,2'-Bis(diphenylphosphino)-1,1'-binaphthyl: Miyashita, A.; Ya-

Soc. **1980**, *102*, 7932–7934.

⁽¹⁰⁾ Representative results with other chiral ligands in THF were as follows: (+)-2,3-O-isopropylidene-2,3-dihydroxy-1,4-bis(diphenylphosphino)butane (DIOP: 2% ee), (2*S*,3*S*)-2,3-bis(diphenylphosphino)butane (CHIRA-PHOS: 1% ee), (*R*)-*N*,*N*-dimethyl-1-[(*S*)-1',2-bis(diphenylphosphino)butane (CHIRA-PHOS: 1% ee), (*R*,*N*,*N*-dimethyl-1-[(*S*)-1',2-bis(diphenylphosphino)ferrocenyl]-ethylamine (BPPFA: 13% ee), (*R*,*R*)-2,2"-bis[(*S*)-1-(diphenylphosphino)ethyl]-1,1"-biferrocene (PhTRAP: 21% ee), (1*R*,2*R*)-bis[*N*-(2'-diphenylphosphino) benzoylamino]cyclohexane (no reaction), (S)-2-[2-(diphenylphosphino)phenyl]-4-(phenyl)oxazoline (1% ee).

⁽¹¹⁾ Toluene was superior to THF, giving 56% ee of 3a. The enantioselectivities of 3a in some other solvents were as follows: Et₂O (47% ee), CH₂-Cl₂ (31% ee), *i*-PrOH (40% ee).

Communications to the Editor

giving higher enantioselectivities with increasing steric bulkiness of the γ -substituents. In general, the allylation of **1** with cinnamyl acetate (**2c**) proceeded well at -30 °C to afford the corresponding **3f**-**j** with 91–95% ee (entries 5–9). On the other hand, the acyl substituent R¹ of **1** affected the enantioselectivities of the allylation reaction slightly.

The allylation of **1b** with either (*Z*)-**2b** or **4** afforded (*R*)-**3d** with nearly identical enantioselectivity (85–86% ee) without the formation of its regio- and geometrical isomers, suggesting that the nucleophilic attack of an enolate of **1** may be slow as compared with any possible $\pi - \sigma - \pi$ isomerization of the π -allyl-palladium complex initially generated (Scheme 2).¹²

Scheme 2

Although the mechanism for the enantioface-selection of the enolate of **1** has not been made clear yet, the phenyl groups of BINAP ligand may be crucially important for the control of stereoselectivity. As seen from the X-ray crystal structure of [Pd- $(\pi$ -allyl){(*R*)-BINAP}]ClO₄ (Figure 2),¹³ two equatorial¹⁴ phenyls on the phosphorus stretch out over the π -allyl ligand on the palladium atom. Consequently, the phenyl groups of BINAP may interact with the prochiral nucleophile approaching the π -allyl carbon structure from the opposite face.

(13) For crystal structures of BINAP-palladium complexes with a di- or trisubstituted *π*-allyl ligand, see: (a) Pregosin, P. S.; Rüegger, H.; Salzmann, R.; Albinati, A.; Lianza, F.; Kunz, R. W. Organometallics **1994**, *13*, 83–90.
(b) Pregosin, P. S.; Rüegger, H.; Salzmann, R.; Albinati, A.; Lianza, F.; Kunz, R. W. Organometallics **1994**, *13*, 5040–5048. (c) Drommi, D.; Nesper, R.; Pregosin, P. S.; Trabesinger, G.; Zürcher, F. Organometallics **1997**, *16*, 4268–4275. (d) Yamaguchi, M.; Yabuki, M.; Yamagishi, T.; Sakai, K.; Tsubomura, T. Chem. Lett. **1996**, 241–242.

(14) Equatorial orientation of phenyl group in BINAP-metal complex was defined in the following references: (a) Noyori, R. *Science* **1990**, *248*, 1194–1199. (b) Ozawa, F.; Kubo, A.; Matsumoto, Y.; Hayashi, T.; Nishioka, E.; Yanagi, K.; Moriguchi, K.-i. *Organometallics* **1993**, *12*, 4188–4196.

(15) Brown, H. C.; Krishnamurthy, S. J. Am. Chem. Soc. 1972, 94, 7159–7161.

(16) The relative stereochemisty between the 2- and 3-position was determined by the X-ray crystal structure of racemic 5 (R = H). See Supporting Information.

(17) Ohtani, I.; Kusumi, T.; Kashman, Y.; Kakisawa, H. J. Am. Chem. Soc. **1991**, 113, 4092–4096.

(18) Carlsen, P. H. J.; Katsuki, T.; Martin, V. S.; Sharpless, K. B. J. Org. Chem. **1981**, 46, 3936–3938.

Figure 2. X-ray crystal structure of $[Pd(\pi-allyl){(R)-BINAP}]ClO₄ (CH₃-COCH₃). (a) ORTEP drawing (50% probability level). Hydrogen atoms, perchlorate anion, and acetone are omitted for clarity. (b) Space filling model. Black atoms indicate the carbon atoms of the <math>\pi$ -allyl ligand.

Optically active (*R*)-2-(*N*-acetylamino)-3-oxocarboxylates **3** thus obtained were readily converted into various α -alkylated α -amino acid derivatives (Scheme 3). Reductions of **3** with

Scheme 3

L-Selectride¹⁵ gave the corresponding (2*R*,3*S*)- α -alkyl- β -hydroxy- α -amino acid derivatives **5** with high diastereoselectivities (>96% de).¹⁶ The absolute configurations of **3** were assigned to be *R* by NMR studies of the MTPA esters of **5**.¹⁷ Oxidative cleavage of the olefin of **3g** with NaIO₄ and a catalytic amount of RuO₂ (2 mol %) followed by treatment with diazomethane gave a protected α -acetylaspartic acid **6** in 82% yield without the loss of the enantiopurity.¹⁸

We succeeded in highly enantioselective allylation of prochiral nucleophile **1** by a BINAP-palladium catalyst, providing optically active α -allyl- α -acetamido- β -ketoesters **3**, which are versatile precursors for the synthesis of β -hydroxy- α -alkyl- α -amino acids. Further mechanistic studies are in progress.

Acknowledgment. This work was supported by a Grant-in-Aid for Scientific Research on Priority Areas, No. 706: Dynamic Control of Stereochemistry, from Monbusho.

Supporting Information Available: Experimental procedures, compound characterization data, and X-ray crystal structure data (PDF). This material is available free of charge via the Internet at http://pubs.acs.org. JA9900104

^{(12) (}a) Trost, B. M.; Verhoeven, T. R. J. Am. Chem. Soc. **1980**, 102, 4730–4743. (b) Mackenzie, P. B.; Whelan, J.; Bosnich, B. J. Am. Chem. Soc. **1985**, 107, 2046–2054. (c) Hayashi, T.; Yamamoto, A.; Hagihara, T. J. Org. Chem. **1986**, *51*, 723–727.