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Catalytic asymmetric allylation through a chiralπ-allylpalla-
dium(II) complex has been intensively studied.1 Most of the
successful examples introduce a chiral center on an allylic sub-
strate.2 The enantioselective electrophilic attack of aπ-allyl-
palladium(II) to a stabilized prochiral nucleophile is not facile to
be controlled by a chiral ligand on the palladium atom,3,4 which
is at the opposite side of theπ-allyl carbon structure from the
approaching nucleophile (Figure 1).5 Some devices have led to

the high enantioselective allylation of carbon nucleophiles, for
example, (i) by the use of a bimetallic catalyst system for
allylation with chiral rhodium(I) enolate ofR-cyanopropionates,6

(ii) by the use of a chiral bidentate ligand with wide bite angle
for asymmetric allylation of cyclicâ-ketoesters,7 which may
induce effective transmission of the ligand chirality.

Herein, we wish to report a highly enantioselective allylation
(up to 95% ee) of prochiral nucleophiles,R-acetamido-â-
ketoesters1, catalyzed by the chiral BINAP-palladium complex.
TheR-acetamido-â-ketoesters are new carbon nucleophiles, which
undergo palladium-catalyzed allylations to furnishR-allyl-R-
acetamido-â-ketoesters3 having a quaternary stereogenic center
at theR-carbon.8

The first attempt for asymmetric allylation of methyl 2-(N-
acetylamino)-3-oxopentanoate (1a) with allyl methyl carbonate
was carried out in THF at 0°C in the presence of the palladium
catalyst generated from Pd2(dba)3‚CHCl3 and (R)-BINAP.9 The
reaction was completed in 5 h togive the corresponding allylation
product (3a) with 45% ee in 97% yield.10,11The enantioselectivity
was improved up to 72% ee by the use of allyl acetate andt-BuOK
in toluene at-30 °C for 30 h in the presence of the palladium
complex catalyst generated from [Pd(π-allyl)Cl] 2 and (R)-BINAP,
giving 3a in 76% yield (Scheme 1).

The allylations ofR-acetamido-â-ketoesters1 with some allylic
substrates2 in toluene at-30 °C were examined, as summarized
in Table 1. Various optically active allylation products3b-j were
obtained with 77-95% ee in high yields by the use of the (R)-
BINAP-palladium catalyst. Noteworthy is that the allylation of
1 with γ-substituted allylic substrates2b and 2c provided
selectively the corresponding3d-j without being accompanied
by the regio- and (Z)-geometrical isomers. The enantioselectivities
depended significantly upon substituent at theγ-carbon of2,
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Table 1. Asymmetric Allylation ofR-Acetamido-â-ketoesters1a

entry R1 (1) R2 (2) time, h product yield, %b ee, %c

1 Me (1b) H (2a) 24 3b 84 76
2 Ph (1c) H (2a) 24 3c 92 80
3 Me (1b) Pr (2b) 24 3d 96 87
4 Ph (1c) Pr (2b) 48 3e 40 89
5 Et (1a) Ph (2c) 4 3f 87 91
6 Me (1b) Ph (2c) 2 3g 87 94
7 Ph (1c) Ph (2c) 48 3h 71 95
8 i-Bu (1d) Ph (2c) 2 3i 86 92
9 i-Pr (1e) Ph (2c) 4 3j 85 91

a All reactions were carried out in toluene (0.2 M) at-30 °C. The
ratio of 1:2:t-BuOK:[Pd(π-allyl)Cl] 2:(R)-BINAP was 100:150:120:1:
1.05 unless otherwise noted.b Isolated yield by PTLC.c Determined
by HPLC analysis with chiral stationary-phase column.
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giving higher enantioselectivities with increasing steric bulkiness
of theγ-substituents. In general, the allylation of1 with cinnamyl
acetate (2c) proceeded well at-30 °C to afford the corresponding
3f-j with 91-95% ee (entries 5-9). On the other hand, the acyl
substituent R1 of 1 affected the enantioselectivities of the allylation
reaction slightly.

The allylation of1b with either (Z)-2b or 4 afforded (R)-3d
with nearly identical enantioselectivity (85-86% ee) without the
formation of its regio- and geometrical isomers, suggesting that
the nucleophilic attack of an enolate of1 may be slow as com-
pared with any possibleπ-σ-π isomerization of theπ-allyl-
palladium complex initially generated (Scheme 2).12

Although the mechanism for the enantioface-selection of the
enolate of1 has not been made clear yet, the phenyl groups of
BINAP ligand may be crucially important for the control of
stereoselectivity. As seen from the X-ray crystal structure of [Pd-
(π-allyl){(R)-BINAP}]ClO4 (Figure 2),13 two equatorial14 phenyls
on the phosphorus stretch out over theπ-allyl ligand on the
palladium atom. Consequently, the phenyl groups of BINAP may
interact with the prochiral nucleophile approaching theπ-allyl
carbon structure from the opposite face.

Optically active (R)-2-(N-acetylamino)-3-oxocarboxylates3
thus obtained were readily converted into variousR-alkylated
R-amino acid derivatives (Scheme 3). Reductions of3 with

L-Selectride15 gave the corresponding (2R,3S)-R-alkyl-â-hydroxy-
R-amino acid derivatives5 with high diastereoselectivities (>96%
de).16 The absolute configurations of3 were assigned to beR by
NMR studies of the MTPA esters of5.17 Oxidative cleavage of
the olefin of3g with NaIO4 and a catalytic amount of RuO2 (2
mol %) followed by treatment with diazomethane gave a protected
R-acetylaspartic acid6 in 82% yield without the loss of the
enantiopurity.18

We succeeded in highly enantioselective allylation of prochiral
nucleophile1 by a BINAP-palladium catalyst, providing optically
active R-allyl-R-acetamido-â-ketoesters3, which are versatile
precursors for the synthesis ofâ-hydroxy-R-alkyl-R-amino acids.
Further mechanistic studies are in progress.
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Figure 2. X-ray crystal structure of [Pd(π-allyl){(R)-BINAP}]ClO4‚(CH3-
COCH3). (a) ORTEP drawing (50% probability level). Hydrogen atoms,
perchlorate anion, and acetone are omitted for clarity. (b) Space filling
model. Black atoms indicate the carbon atoms of theπ-allyl ligand.
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